Riesz bases, Meyer's quasicrystals, and bounded remainder sets

Sigrid Grepstad

$$
\text { June 7, } 2018
$$

Joint work with Nir Lev

Riesz bases of exponentials

$S \subset \mathbb{R}^{d}$ is bounded and measurable.
$\Lambda \subset \mathbb{R}^{d}$ is discrete.
The exponential system

$$
E(\Lambda)=\left\{e_{\lambda}\right\}_{\lambda \in \Lambda}, \quad e_{\lambda}(x)=e^{2 \pi i\langle\lambda, x\rangle}
$$

is a Riesz basis in the space $L^{2}(S)$ if the mapping

$$
f \rightarrow\left\{\left\langle f, e_{\lambda}\right\rangle\right\}_{\lambda \in \Lambda}
$$

is bounded and invertible from $L^{2}(S)$ onto $\ell^{2}(\Lambda)$.

Known results

Kozma, Nitzan (2012): Finite unions of intervals
Kozma, Nitzan (2015): Finite unions of rectangles in \mathbb{R}^{d}
G., Lev and Kolountzakis (2012/2013): Multi-tiling sets in \mathbb{R}^{d} Lyubarskii, Rashkovskii (2000): Convex, centrally symmetric polygons in \mathbb{R}^{2}

Questions

- What about the ball in dimensions two and higher?
- Does every set in \mathbb{R}^{d} admit a Riesz basis of exponentials?

Density

Lower and upper uniform densities:

$$
\begin{aligned}
& D^{-}(\Lambda)=\liminf _{R \rightarrow \infty} \inf _{x \in \mathbb{R}^{d}} \frac{\#\left(\Lambda \cap\left(x+B_{R}\right)\right)}{\left|B_{R}\right|} \\
& D^{+}(\Lambda)=\limsup _{R \rightarrow \infty} \sup _{x \in \mathbb{R}^{d}} \frac{\#\left(\Lambda \cap\left(x+B_{R}\right)\right)}{\left|B_{R}\right|}
\end{aligned}
$$

If $E(\Lambda)$ is a Riesz basis in $L^{2}(S)$, then $D^{-}(\Lambda)=D^{+}(\Lambda)=\operatorname{mes} S$.

Cut-and-project sets

We define the Meyer cut-and-project set

$$
\Lambda(\Gamma, W)=\left\{p_{1}(\gamma): \gamma \in \Gamma, p_{2}(\gamma) \in W\right\}
$$

with density $D(\Lambda)=\operatorname{mes} W / \operatorname{det} \Gamma$.

Simple quasicrystals

We define the simple quasicrystal

$$
\Lambda(\Gamma, I)=\left\{p_{1}(\gamma): \gamma \in \Gamma, p_{2}(\gamma) \in I\right\}
$$

with density $D(\Lambda)=|I| / \operatorname{det} \Gamma$.

Sampling on quasicrystals

Matei and Meyer (2008): Simple quasicrystals are universal sampling sets.

Kozma, Lev (2011): Riesz bases of exponentials from quasicrystals in dimension one.

Theorem 1

Let $\Lambda=\Lambda(\Gamma, I)$, and suppose that

$$
|I| \notin p_{2}(\Gamma)
$$

Then there exists no Riemann measurable set S such that $E(\Lambda)$ is a Riesz basis in $L^{2}(S)$

Equidecomposability

The sets S and S^{\prime} are equidecomposable (or scissors congruent).

Theorem 2

Let $\Lambda=\Lambda(\Gamma, I)$, and suppose that

$$
|I| \in p_{2}(\Gamma)
$$

Then $E(\Lambda)$ is a Riesz basis in $L^{2}(S)$ for every Riemann measurable set S, mes $S=D(\Lambda)$, satisfying the following condition:
S is equidecomposable to a parallelepiped with vertices in $p_{1}\left(\Gamma^{*}\right)$, using translations by vectors in $p_{1}\left(\Gamma^{*}\right)$.

$$
\Gamma^{*}=\left\{\gamma^{*} \in \mathbb{R}^{d} \times \mathbb{R}:\left\langle\gamma, \gamma^{*}\right\rangle \in \mathbb{Z} \text { for all } \gamma \in \Gamma\right\}
$$

Example 1

Let α be an irrational number, and define $\Lambda=\{\lambda(n)\}$ by

$$
\lambda(n)=n+\{n \alpha\}, \quad n \in \mathbb{Z}
$$

Then $E(\Lambda)$ is a Riesz basis in $L^{2}(S)$ for every $S \subset \mathbb{R}$, mes $S=1$, which is a finite union of disjoint intervals with lengths in $\mathbb{Z} \alpha+\mathbb{Z}$.

Example 1

Let α be an irrational number, and define $\Lambda=\{\lambda(n)\}$ by

$$
\lambda(n)=n+\{n \alpha\}, \quad n \in \mathbb{Z}
$$

Then $E(\Lambda)$ is a Riesz basis in $L^{2}(S)$ for every $S \subset \mathbb{R}$, mes $S=1$, which is a finite union of disjoint intervals with lengths in $\mathbb{Z} \alpha+\mathbb{Z}$.

Notice that $\{\lambda(n)\}_{n \in \mathbb{Z}}=\Lambda(\Gamma, I)$, where $I=[0,1)$ and

$$
\begin{aligned}
\Gamma & =\{((1+\alpha) n-m, n \alpha-m): m, n \in \mathbb{Z}\} \\
\Gamma^{*} & =\{(n \alpha+m,-n(1+\alpha)-m): m, n \in \mathbb{Z}\}
\end{aligned}
$$

Example 2

Let $\Lambda=\{\lambda(n, m)\}$ be defined by

$$
\lambda(n, m)=(n, m)+\{n \sqrt{2}+m \sqrt{3}\}(\sqrt{2}, \sqrt{3}), \quad(n, m) \in \mathbb{Z}^{2}
$$

$E(\Lambda)$ is a Riesz basis in $L^{2}(S)$ for every set $S \subset \mathbb{R}^{2}$ which is equidecomposable to the unit cube $[0,1)^{2}$ using only translations by vectors in $\mathbb{Z}(\sqrt{2}, \sqrt{3})+\mathbb{Z}^{2}$.

Corollary 1

$\Lambda=\Lambda(\Gamma, I),|I| \in p_{2}(\Gamma)$
$K \subset \mathbb{R}^{d}$ compact, $U \subset \mathbb{R}^{d}$ open
$K \subset U$ and mes $K<D(\Lambda)<\operatorname{mes} U$
There exists a set $S \subset \mathbb{R}^{d}$ satisfying:
i) $K \subset S \subset U$ and mes $S=D(\Lambda)$.
ii) S is equidecomposable to a parallelepiped with vertices in $p_{1}\left(\Gamma^{*}\right)$ using translations by vectors in $p_{1}\left(\Gamma^{*}\right)$.

Duality

$$
\begin{aligned}
\Lambda(\Gamma, I) & =\left\{p_{1}(\gamma): \gamma \in \Gamma, p_{2}(\gamma) \in I\right\} \subset \mathbb{R}^{d} \\
\Lambda^{*}(\Gamma, S) & =\left\{p_{2}\left(\gamma^{*}\right): \gamma^{*} \in \Gamma^{*}, p_{1}\left(\gamma^{*}\right) \in S\right\} \subset \mathbb{R}
\end{aligned}
$$

Duality lemma

Suppose that $E\left(\Lambda^{*}(\Gamma, S)\right)$ is a Riesz basis in $L^{2}(I)$. Then $E(\Lambda(\Gamma, I))$ is a Riesz basis in $L^{2}(S)$.

Lattices of special form

$$
\begin{aligned}
\Gamma & =\left\{\left(\left(\operatorname{Id}+\beta \alpha^{\top}\right) m-\beta n, n-\alpha^{\top} m\right): m \in \mathbb{Z}^{d}, n \in \mathbb{Z}\right\} \\
\Gamma^{*} & =\left\{\left(m+n \alpha,\left(1+\beta^{\top} \alpha\right) n+\beta^{\top} m\right): m \in \mathbb{Z}^{d}, n \in \mathbb{Z}\right\}
\end{aligned}
$$

Theorem 2

Let $\Lambda=\Lambda(\Gamma, I)$ and suppose that

$$
|I|=m_{1} \alpha_{1}+\cdots m_{d} \alpha_{d}+n
$$

for integers m_{1}, \ldots, m_{d} and n. Then $E(\Lambda)$ is a Riesz basis in $L^{2}(S)$ for every Riemann measurable set S, mes $S=|I|$, which is equidecomposable to a parallelepiped with vertices in $\mathbb{Z}^{d}+\alpha \mathbb{Z}$ using translations by vectors in $\mathbb{Z}^{d}+\alpha \mathbb{Z}$.

By duality, we may choose to consider

$$
\Lambda^{*}(\Gamma, S)=\left\{n+\beta^{\top}(n \alpha+m): n \alpha+m \in S\right\}
$$

where $n \in \mathbb{Z}$ and $m \in \mathbb{Z}^{d}$.
Question: When is $E\left(\Lambda^{*}\right)$ a Riesz basis in $L^{2}(I)$ for an interval of length $|I|=\operatorname{mes} S$?

Avdonin's theorem

Avdonins theorem

Let $I \subset \mathbb{R}$ be an interval and $\Lambda=\left\{\lambda_{j}: j \in \mathbb{Z}\right\}$ be a sequence in \mathbb{R} satisfying:
(a) Λ is separated;
(b) $\sup _{j}\left|\delta_{j}\right|<\infty$, where $\delta_{j}:=\lambda_{j}-j /|I|$;
(c) There is a constant c and positive integer N such that

$$
\sup _{k \in \mathbb{Z}}\left|\frac{1}{N} \sum_{j=k+1}^{k+N} \delta_{j}-c\right|<\frac{1}{4|I|}
$$

Then $E(\Lambda)$ is a Riesz basis in $L^{2}(I)$.

$$
\begin{aligned}
\Lambda^{*}(\Gamma, S) & =\left\{n+\beta^{\top}(n \alpha+m): n \in \mathbb{Z}, m \in \mathbb{Z}^{d}, n \alpha+m \in S\right\} \\
& =\bigcup \Lambda_{n}, \quad \Lambda_{n}=\left\{n+\beta^{\top} s: s=n \alpha+m \in S\right\}
\end{aligned}
$$

\mathbb{R}

Irrational rotation on the torus

$$
\begin{aligned}
& S \subset \mathbb{T}^{d}=\mathbb{R}^{d} / \mathbb{Z}^{d} \\
& \alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d}\right)
\end{aligned}
$$

The sequence $\{n \alpha\}$ is equidistributed.

$$
\frac{1}{n} \sum_{k=0}^{n-1} \chi_{S}(x+k \alpha) \rightarrow \operatorname{mes} S
$$

$$
D_{n}(S, x)=\sum_{k=0}^{n-1} \chi_{S}(x+k \alpha)-n \operatorname{mes} S=o(n)
$$

Bounded remainder sets

Definition

A set S is a bounded remainder set (BRS) if there is a constant $C=C(S, \alpha)$ such that

$$
\left|D_{n}(S, x)\right|=\left|\sum_{k=0}^{n-1} \chi_{S}(x+k \alpha)-n \operatorname{mes} S\right| \leq C
$$

for all n and a.e. x.

Claim: The quasicrystal $\Lambda^{*}(\Gamma, S)$ is at bounded distance from $\{j / \operatorname{mes} S\}_{j \in \mathbb{Z}}$ if and only if S is a bounded remainder set.

Claim: The quasicrystal $\Lambda^{*}(\Gamma, S)$ is at bounded distance from $\{j / \text { mes } S\}_{j \in \mathbb{Z}}$ if and only if S is a bounded remainder set.

$$
\begin{aligned}
\Lambda^{*} & =\left\{n+\beta^{\top}(n \alpha+m): n \in \mathbb{Z}, m \in \mathbb{Z}^{d}, n \alpha+m \in S\right\} \\
& =\bigcup_{n} \Lambda_{n}, \quad \Lambda_{n}=\left\{n+\beta^{\top} s: s=n \alpha+m \in S\right\}
\end{aligned}
$$

Claim: The quasicrystal $\Lambda^{*}(\Gamma, S)$ is at bounded distance from $\{j / \text { mes } S\}_{j \in \mathbb{Z}}$ if and only if S is a bounded remainder set.

$$
\begin{aligned}
\Lambda^{*} & =\left\{n+\beta^{\top}(n \alpha+m): n \in \mathbb{Z}, m \in \mathbb{Z}^{d}, n \alpha+m \in S\right\} \\
& =\bigcup_{n} \Lambda_{n}, \quad \Lambda_{n}=\left\{n+\beta^{\top} s: s=n \alpha+m \in S\right\}
\end{aligned}
$$

Claim: The quasicrystal $\Lambda^{*}(\Gamma, S)$ is at bounded distance from $\{j / \text { mes } S\}_{j \in \mathbb{Z}}$ if and only if S is a bounded remainder set.

$$
\left.\begin{array}{c}
\Lambda^{*}=\left\{n+\beta^{\top}(n \alpha+m): n \in \mathbb{Z}, m \in \mathbb{Z}^{d}, n \alpha+m \in S\right\} \\
=\bigcup_{n} \Lambda_{n}, \quad \Lambda_{n}=\left\{n+\beta^{\top} s: s=n \alpha+m \in S\right\}
\end{array}\right\}
$$

Claim: The quasicrystal $\Lambda^{*}(\Gamma, S)$ is at bounded distance from $\{j / \text { mes } S\}_{j \in \mathbb{Z}}$ if and only if S is a bounded remainder set.

$$
\begin{aligned}
\Lambda^{*} & =\left\{n+\beta^{\top}(n \alpha+m): n \in \mathbb{Z}, m \in \mathbb{Z}^{d}, n \alpha+m \in S\right\} \\
& =\bigcup_{n} \Lambda_{n}, \quad \Lambda_{n}=\left\{n+\beta^{\top} s: s=n \alpha+m \in S\right\} \\
N= & \left|\Lambda^{*} \cap[0, K)\right|=\sum_{k=0}^{K-1}\left|\Lambda_{k}\right|+\text { const }=\sum_{k=0}^{K-1} \chi_{S}(k \alpha)+\text { const } \\
= & |\mathbb{Z} / \operatorname{mes} S \cap[0, K)|+\text { const }=K \operatorname{mes} S+\text { const }
\end{aligned}
$$

Properties of bounded remainder sets

Theorem (G., Lev 2015)

Any parallelepiped in \mathbb{R}^{d} spanned by vectors v_{1}, \ldots, v_{d} belonging to $\mathbb{Z} \alpha+\mathbb{Z}^{d}$ is a bounded remainder set.
(Duneau and Oguey (1990): Displacive transformations and quasicrystalline symmetries)

Theorem

The measure of any bounded remainder set must be of the form

$$
n_{0}+n_{1} \alpha_{1}+\cdots+n_{d} \alpha_{d}
$$

where $n_{0}, \ldots n_{d}$ are integers.

Characterization of Riemann measurable BRS

Theorem

A Riemann measurable set $S \subset \mathbb{R}^{d}$ is a BRS if and only if there is a parallelepiped P spanned by vectors belonging to $\mathbb{Z} \alpha+\mathbb{Z}^{d}$, such that S and P are equidecomposable using translations by vectors in $\mathbb{Z} \alpha+\mathbb{Z}^{d}$ only.

Summary proof Theorem 2

$\Lambda^{*}(\Gamma, S)$ provides a Riesz basis $E\left(\Lambda^{*}\right)$ in $L^{2}(I)$ whenever $S \subset \mathbb{R}^{d}$ is a bounded remainder set with mes $S=|I|$, i.e. if S is equidecomposable to a parallelepiped spanned by vectors in $\mathbb{Z} \alpha+\mathbb{Z}^{d}$ using translations by vectors in $\mathbb{Z} \alpha+\mathbb{Z}^{d}$.
\Downarrow (Duality)
$\Lambda(\Gamma, I)$ gives a Riesz basis $E(\Lambda)$ in $L^{2}(S)$ for all such sets S.

Note: The given equidecomposition condition on S implies that

$$
\operatorname{mes} S=n_{0}+n_{1} \alpha_{1}+\cdots+n_{d} \alpha_{d} \in p_{2}(\Gamma)
$$

Pavlov's complete characterization

One can deduce from Pavlov's complete characterization of exponential Riesz bases in $L^{2}(I)$ that for $\Lambda^{*}=\Lambda^{*}(\Gamma, S)$ to provide a Riesz basis in $L^{2}(I)$ it is necessary that the sequence of discrepancies

$$
\left\{d_{n}\right\}_{n \geq 1}=\left\{\sum_{k=0}^{n-1} \chi_{S}(k \alpha)-n \operatorname{mes} S\right\}_{n \geq 1}
$$

is in BMO, i.e. satisfies

$$
\sup _{n<m}\left(\frac{1}{m-n} \sum_{k=n+1}^{m}\left|d_{k}-\frac{d_{n+1}+\cdots+d_{m}}{m-n}\right|\right)<\infty
$$

Theorem (Kozma and Lev, 2011)

If the sequence

$$
\left\{\sum_{k=0}^{n-1} \chi_{S}(k \alpha)-n \operatorname{mes} S\right\}_{n \geq 1}
$$

belongs to BMO, then the measure of S is of the form

$$
n_{0}+n_{1} \alpha_{1}+\cdots+n_{d} \alpha_{d}
$$

where $n_{0}, n_{1}, \ldots, n_{d}$ are integers.

Open problem

Suppose that the condition

$$
|I|=n_{0}+n_{1} \alpha_{1}+\cdots+n_{d} \alpha_{d}
$$

is satisfied. Are there additional sets $S \subset \mathbb{R}^{d}$ which admit $E(\Lambda(\Gamma, I))$ as a Riesz basis?

Related question: Does there exist a set S for which the sequence

$$
\left\{\sum_{k=0}^{n-1} \chi_{S}(k \alpha)-n \operatorname{mes} S\right\}_{n \geq 1}
$$

is unbounded, but in BMO ?

Thank you for your attention.

