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Riesz bases of exponentials

S ⊂ Rd is bounded and measurable.

Λ ⊂ Rd is discrete.

The exponential system

E(Λ) = {eλ}λ∈Λ , eλ(x) = e2πi〈λ,x〉,

is a Riesz basis in the space L2(S) if the mapping

f → {〈f, eλ〉}λ∈Λ

is bounded and invertible from L2(S) onto `2(Λ).



Known results

Kozma, Nitzan (2012): Finite unions of intervals

Kozma, Nitzan (2015): Finite unions of rectangles in Rd

G., Lev and Kolountzakis (2012/2013): Multi-tiling sets in Rd

Lyubarskii, Rashkovskii (2000): Convex, centrally symmetric
polygons in R2

Questions
What about the ball in dimensions two and higher?
Does every set in Rd admit a Riesz basis of exponentials?



Density

Lower and upper uniform densities:

D−(Λ) = lim inf
R→∞

inf
x∈Rd

#(Λ ∩ (x+BR))

|BR|

D+(Λ) = lim sup
R→∞

sup
x∈Rd

#(Λ ∩ (x+BR))

|BR|

If E(Λ) is a Riesz basis in L2(S), then D−(Λ) = D+(Λ) = mesS.



Cut-and-project sets
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We define the Meyer cut-and-project set

Λ(Γ,W ) = {p1(γ) : γ ∈ Γ, p2(γ) ∈W},

with density D(Λ) = mesW/det Γ.
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Simple quasicrystals
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We define the simple quasicrystal

Λ(Γ, I) = {p1(γ) : γ ∈ Γ, p2(γ) ∈ I},

with density D(Λ) = |I|/ det Γ.



Sampling on quasicrystals

Matei and Meyer (2008): Simple quasicrystals are universal
sampling sets.

Kozma, Lev (2011): Riesz bases of exponentials from
quasicrystals in dimension one.



Theorem 1
Let Λ = Λ(Γ, I), and suppose that

|I| /∈ p2(Γ).

Then there exists no Riemann measurable set S such that E(Λ) is
a Riesz basis in L2(S)



Equidecomposability
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The sets S and S′ are equidecomposable (or scissors congruent).



Theorem 2
Let Λ = Λ(Γ, I), and suppose that

|I| ∈ p2(Γ).

Then E(Λ) is a Riesz basis in L2(S) for every Riemann measurable
set S, mesS = D(Λ), satisfying the following condition:

S is equidecomposable to a parallelepiped with vertices in p1(Γ∗),
using translations by vectors in p1(Γ∗).

Γ∗ =
{
γ∗ ∈ Rd × R : 〈γ, γ∗〉 ∈ Z for all γ ∈ Γ

}



Example 1

Let α be an irrational number, and define Λ = {λ(n)} by

λ(n) = n+ {nα} , n ∈ Z.

Then E(Λ) is a Riesz basis in L2(S) for every S ⊂ R, mesS = 1,
which is a finite union of disjoint intervals with lengths in Zα+ Z.

Notice that {λ(n)}n∈Z = Λ(Γ, I), where I = [0, 1) and

Γ = {((1 + α)n−m,nα−m) : m,n ∈ Z} ,
Γ∗ = {(nα+m,−n(1 + α)−m) : m,n ∈ Z}
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Example 2

Let Λ = {λ(n,m)} be defined by

λ(n,m) = (n,m) + {n
√

2 +m
√

3}(
√

2,
√

3), (n,m) ∈ Z2.

E(Λ) is a Riesz basis in L2(S) for every set S ⊂ R2 which is
equidecomposable to the unit cube [0, 1)2 using only translations by
vectors in Z(

√
2,
√

3) + Z2.



Corollary 1

Λ = Λ(Γ, I), |I| ∈ p2(Γ)

K ⊂ Rd compact, U ⊂ Rd open

K ⊂ U and mesK < D(Λ) < mesU

There exists a set S ⊂ Rd satisfying:
i) K ⊂ S ⊂ U and mesS = D(Λ).
ii) S is equidecomposable to a parallelepiped with vertices in

p1(Γ∗) using translations by vectors in p1(Γ∗).



Duality

Λ(Γ, I) = {p1(γ) : γ ∈ Γ, p2(γ) ∈ I} ⊂ Rd

Λ∗(Γ, S) = {p2(γ∗) : γ∗ ∈ Γ∗, p1(γ∗) ∈ S} ⊂ R

Duality lemma

Suppose that E(Λ∗(Γ, S)) is a Riesz basis in L2(I). Then
E(Λ(Γ, I)) is a Riesz basis in L2(S).



Lattices of special form

Γ =
{(

(Id +βα>)m− βn, n− α>m
)

: m ∈ Zd, n ∈ Z
}

Γ∗ =
{(
m+ nα, (1 + β>α)n+ β>m

)
: m ∈ Zd, n ∈ Z

}
Theorem 2
Let Λ = Λ(Γ, I) and suppose that

|I| = m1α1 + · · ·mdαd + n

for integers m1, . . . ,md and n. Then E(Λ) is a Riesz basis in
L2(S) for every Riemann measurable set S, mesS = |I|, which is
equidecomposable to a parallelepiped with vertices in Zd + αZ
using translations by vectors in Zd + αZ.



By duality, we may choose to consider

Λ∗(Γ, S) =
{
n+ β>(nα+m) : nα+m ∈ S

}
,

where n ∈ Z and m ∈ Zd.

Question: When is E(Λ∗) a Riesz basis in L2(I) for an interval of
length |I| = mesS?



Avdonin’s theorem

Avdonins theorem
Let I ⊂ R be an interval and Λ = {λj : j ∈ Z} be a sequence in R
satisfying:
(a) Λ is separated;
(b) supj |δj | <∞, where δj := λj − j/|I|;
(c) There is a constant c and positive integer N such that

sup
k∈Z

∣∣∣∣∣∣ 1

N

k+N∑
j=k+1

δj − c

∣∣∣∣∣∣ < 1

4|I|

Then E(Λ) is a Riesz basis in L2(I).



Λ∗(Γ, S) =
{
n+ β>(nα+m) : n ∈ Z, m ∈ Zd, nα+m ∈ S

}
=
⋃

Λn, Λn =
{
n+ β>s : s = nα+m ∈ S

}

R

R

S

α



Irrational rotation on the torus

S ⊂ Td = Rd/Zd
α = (α1, α2, . . . , αd)

The sequence {nα} is equidistributed.

α

S
1

n

n−1∑
k=0

χS(x+ kα)→ mesS

(n→∞)

Dn(S, x) =

n−1∑
k=0

χS(x+ kα)− nmesS = o(n)



Bounded remainder sets

Definition
A set S is a bounded remainder set (BRS) if there is a constant
C = C(S, α) such that

|Dn(S, x)| =

∣∣∣∣∣
n−1∑
k=0

χS(x+ kα)− nmesS

∣∣∣∣∣ ≤ C
for all n and a.e. x.



Claim: The quasicrystal Λ∗(Γ, S) is at bounded distance from
{j/mesS}j∈Z if and only if S is a bounded remainder set.
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Properties of bounded remainder sets

Theorem (G., Lev 2015)

Any parallelepiped in Rd spanned by vectors v1, . . . , vd belonging to
Zα+ Zd is a bounded remainder set.

(Duneau and Oguey (1990): Displacive transformations and
quasicrystalline symmetries)

Theorem
The measure of any bounded remainder set must be of the form

n0 + n1α1 + · · ·+ ndαd

where n0, . . . nd are integers.



Characterization of Riemann measurable BRS

Theorem

A Riemann measurable set S ⊂ Rd is a BRS if and only if there is a
parallelepiped P spanned by vectors belonging to Zα+ Zd, such
that S and P are equidecomposable using translations by vectors in
Zα+ Zd only.



Summary proof Theorem 2

Λ∗(Γ, S) provides a Riesz basis E(Λ∗) in L2(I) whenever S ⊂ Rd
is a bounded remainder set with mesS = |I|, i.e. if S is
equidecomposable to a parallelepiped spanned by vectors in
Zα+ Zd using translations by vectors in Zα+ Zd.

⇓ (Duality)

Λ(Γ, I) gives a Riesz basis E(Λ) in L2(S) for all such sets S.

Note: The given equidecomposition condition on S implies that

mesS = n0 + n1α1 + · · ·+ ndαd ∈ p2(Γ).



Pavlov’s complete characterization

One can deduce from Pavlov’s complete characterization of
exponential Riesz bases in L2(I) that for Λ∗ = Λ∗(Γ, S) to provide
a Riesz basis in L2(I) it is necessary that the sequence of
discrepancies

{dn}n≥1 =

{
n−1∑
k=0

χS(kα)− nmesS

}
n≥1

is in BMO, i.e. satisfies

sup
n<m

(
1

m− n

m∑
k=n+1

∣∣∣∣dk − dn+1 + · · ·+ dm
m− n

∣∣∣∣
)
<∞.



Theorem (Kozma and Lev, 2011)

If the sequence {
n−1∑
k=0

χS(kα)− nmesS

}
n≥1

belongs to BMO, then the measure of S is of the form

n0 + n1α1 + · · ·+ ndαd,

where n0, n1, . . . , nd are integers.



Open problem

Suppose that the condition

|I| = n0 + n1α1 + · · ·+ ndαd

is satisfied. Are there additional sets S ⊂ Rd which admit
E(Λ(Γ, I)) as a Riesz basis?

Related question: Does there exist a set S for which the sequence{
n−1∑
k=0

χS(kα)− nmesS

}
n≥1

is unbounded, but in BMO?



Thank you for your attention.


